249
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effects of pH on simultaneous Cr(VI) and p-chlorophenol removal and electrochemical performance in Leersia hexandra constructed wetland-microbial fuel cell

ORCID Icon, &
Pages 483-494 | Received 12 Mar 2022, Accepted 07 Aug 2022, Published online: 25 Aug 2022
 

ABSTRACT

Cr(VI) and p-chlorophenol (4-CP) are common pollutants in the aquatic environment but are difficult to degrade and have complex toxic effects. A downflow Leersia hexandra microbial fuel cell (DLCW-MFC) system was constructed to purify Cr(VI) and 4-CP polluted wastewater, as well as to investigate the effects of different pHs on Cr(VI) and 4-CP removal, electrochemical performance, physiological and biochemical responses, and Cr enrichment status of L. hexandra. The results showed that the DLCW-MFC had the highest Cr(VI) and 4-CP removal rates at pH 6.5, which were 99.0% and 78.6%, respectively. At the same time, 543 mV output voltage and 72.25 mW/m2 power density of the system were generated at pH 6.5, which were better than those at pH 7.4 and pH 5.8. The electrochemical performance result showed that pH 6.5 enhanced charge transfer ability and ion diffusion ability of the system. pH 6.5 also promoted growth and photosynthesis, and enhanced the Cr enrichment capacity (4.56 mg/10 plants) of L. hexandra. These results demonstrate that pH 6.5 was the optimum pH for the DLCW-MFC synchronous treatment of Cr(VI) and 4-CP as well as the generation of electricity. The DLCW-MFC designed in this study will provide a reference for purifying polluted wastewater and generating electricity.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (52070051; 52170154), Guangxi Science and Technology Program (2020GXNSFAA297256), Guangxi Colleges and Universities High-level Innovation Team and Outstanding Scholars Program Project (Guike finance letter [2018]319), and Guangxi Bagui Scholars and Specially Appointed Expert Projects. At the same time, I would like to thank my girlfriend Yu Cheng for her company during my study.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.