349
Views
1
CrossRef citations to date
0
Altmetric
Articles

Metagenome sequencing to unveil the occurrence and distribution of antibiotic resistome and in a wastewater treatment plant

, , , &
Pages 1933-1942 | Received 20 Dec 2021, Accepted 03 Dec 2022, Published online: 22 Feb 2023
 

ABSTRACT

The emergence and persistence of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs) has aroused growing public concern for its risk to human health and ecological safety. Moreover, heavy metals concentrated in sewage and sludge could potentially favour co-selection of ARGs and heavy metal resistance genes (HMRGs). In this study, the profile and abundance of antibiotic and metal resistance genes in influent, sludge and effluent were characterized based on the Structured ARG Datebase (SARG) and Antibacterial Biocide and Metal Resistance Gene Datebase (BacMet) by metagenomic analysis. Sequences were aligning against the INTEGRALL, ISFinder, ICEberg and NCBI RefSeq databases to obtain the diversity and abundance of mobile genetic elements (MGEs, e.g.plasmid and transposon). Among them, 20 types of ARGs and 16 types of HMRG were detected in all samples, the influent metagenomes contained many more resistance genes (both ARGs and HMRGs) than the sludge and the influent sample, large reductions in the relatively abundance and diversity of ARG were achieved by biological treatment. ARGs and HMRGs cannot be completely eliminated during the oxidation ditch. A total of 32 species of the potential pathogens were detected, relative abundances of pathogens had no obvious changes. It is suggested that more specific treatments are required to limit their proliferation in the environment. This study can be helpful for further understanding the removal of antibiotic resistance genes in the sewage treatment process via metagenomic sequencing.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The authors confirm that the data supporting the findings of this study are available at https://bigd.big.ac.cn/gsa under the project accession number CRA003193 and its supplementary material.

Additional information

Funding

This work was supported by National Natural Science Foundation of China (No. 52170097).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.