200
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Mixing on Biomethanation of Cattle-Manure Slurry

Pages 1081-1090 | Published online: 11 May 2010
 

Abstract

The benefits and extent of mixing required during biomethanation of cattle-manure slurry was studied by investigating the effect of: 1) continuous and intermittent mixing; 2) agitator impeller speed and position; 3) not providing assisted mixing; 4) mixing on production of extracellular polymeric substances; and 5) mixing on the ultimate anaerobic biodegradability. Biomethanation was not adversely affected: during intermittent mixing; or when only sufficient mixing was provided to maintain off-bottom suspension of digester contents; or by doubling impeller speed. In fact continuous digestion of cattle-manure slurry without mechanical stirring was superior in terms of gas production. This can be attributed to increased loss of active volatile solids during stirring. Moreover, long-term batch digestion studies showed that the rate of biomethanation in a continuously stirred digester was inferior to that of a non-stirred one. Mixing was found to decrease production of extracellular polymeric substances (EPS). The presence of an increased level of EPS during the quiescent state could indicate increased attachment of cells to each other, resulting in larger agglomerates with better settling properties thus increasing biomass retention time.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.