90
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Enhancement of Oxygen Transfer Efficiency in Diffused Aeration Systems using Liquid-Film-Forming Apparatus

Pages 511-519 | Published online: 11 May 2010
 

Abstract

Surface transfer and bubble transfer both contribute significantly to oxygen transfer in a diffused aeration system. In the present study, liquid-film-forming apparatus is successfully developed on a laboratory scale to improve considerably the surface transfer via the unique liquid film transfer technique. The experimental results show that the volumetric mass transfer coefficient for liquid-film-forming apparatus alone is found to be as much as 5.3 times higher than that for water surface and that the total volumetric mass transfer coefficient for liquid film aeration system increases by 37 % in comparison with conventional aeration system. Additionally, by tuning finely the structural parameters of the liquid-film-forming apparatus, it can also lead to high dissolved oxygen water with the dissolved oxygen percent saturation greater than 90 %. More importantly, this result is accomplished by simply offering a single-pass aeration at the depth as shallow as 26 cm. As a result, the objective of economical energy consumption in diffused aeration systems can be realized by lowering the aeration depth without sacrificing the aeration efficiency.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.