519
Views
63
CrossRef citations to date
0
Altmetric
Original Articles

BIOLOGICALLY MEDIATED PHOSPHORUS PRECIPITATION IN WASTEWATER TREATMENT WITH MICROALGAE

Pages 953-960 | Published online: 11 May 2010
 

Abstract

A lab-scale continuous microalgal culture was grown on sterile-filtered wastewater in order to clarify the phosphorus removing mechanisms in a microalgal treatment step that treats residual phosphorus from a hydroponic wastewater treatment pilot plant. The phosphorus assimilation was dependent on algal biomass production, whereas the chemical precipitation was dependent on phosphorus load, i.e. an increase in average precipitation rate with decreased hydraulic retention time was observed. The chemical precipitation was mainly a result of the increased pH, which was biologically mediated by the photosynthesising algae. The precipitate was composed of a calcium phosphate with magnesium included, magnesium hydroxide and calcite. A significant nitrogen removal was also experienced, which implies that the microalgal wastewater treatment is appropriate both for phosphorus and nitrogen removal.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.