471
Views
7
CrossRef citations to date
0
Altmetric
Articles

Comparative ecotoxicity assessment of magnetosomes and magnetite nanoparticles

&
Pages 13-25 | Received 08 Oct 2018, Accepted 12 Jan 2019, Published online: 04 Feb 2019
 

ABSTRACT

Magnetite nanoparticles (MNPs) are gaining attention because of their biomedical, environmental and industrial applications. However, they have limited uses because of ecotoxicity. On contrast, bacterially synthesized MNPs such as magnetosomes are found to be biocompatible and less toxic due to the lipid bilayer membrane found around magnetite. In this context, this study compares the physio-chemical properties and toxicology effects of MNPs and magnetosomes in different models such as human red blood cells, macrophage cell lines (RAW 264.7), onion root tips (Allium cepa), Artemia salina (A. salina) and zebrafish embryo (Danio rerio). MNPs showed 38.59% hemolysis whereas the maximum hemolysis induced by magnetosomes was 7.03% for the same concentration (250 μg/ml). The cytotoxicity of MNPs and magnetosomes were 36.01% and 13.4%, respectively, at 250 μg/ml. Onion root tip assay revealed high toxicity when treated with MNPs than magnetosomes. The MNPs were further tested for its toxicity against A. salina and 50% mortality rate was observed. Similarly, notable malformation was seen in zebrafish embryo treated with MNPs. However, magnetosomes did not exhibit any mortality and malformation in A. salina and zebrafish embryo. The study revealed that magnetosomes are safe and do not cause any potential risk to environment compared to synthetic MNPs.

Abbreviation: MNPs: Magnetic nanoparticles; ATCC: American Type Culture Collection; MTB: Magnetotactic bacteria; MSR-1: Magnetospirillum gryphiswaldense; DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen; MSGM: Magnetospirillum growth medium; D-PBS: Dulbecco phosphate buffer saline; RBC: Red blood cells; SEM: Scanning electron microscopy; HRTEM: High-resolution transition electron microscope; FTIR: Fourier transform infrared spectroscopy; XRD: X-ray powder diffraction; AFM: Atomic-force microscopy; ZP: Zeta Potential; PSD: Particle Size Distribution; EDX: Energy-dispersive X-ray spectroscopy; PBS: Phosphate buffer saline; DMEM: Dulbecco’s modified eagle medium; HEPES: (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid); MTT:3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide; DMSO: Dimethyl sulfoxide; ROS: Reactive oxygen species

Acknowledgments

This work was supported by institutional grant and the authors thank the management of Vellore Institute of Technology (VIT) for providing the necessary facilities for this research. The authors also acknowledge Harish and Karthikeyan (Vellore Institute of Technology) for providing zebrafish embryo and Artemia salina cysts.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.