392
Views
2
CrossRef citations to date
0
Altmetric
Research Article

PM2.5 aggravates airway inflammation in asthmatic mice: activating NF-κB via MyD88 signaling pathway

, , , , &
Pages 563-574 | Received 29 Sep 2021, Accepted 08 Feb 2022, Published online: 28 Feb 2022
 

ABSTRACT

The role of PM2.5 in the bronchial asthma remains unclear. In this study, the deficient mice of TLR4-/-, TLR2-/- and MyD88 -/- were used to establish asthma model. The effects of PM2.5 on the inflammatory response in lung tissue of these mice were observed. PM2.5 increased alveolar macrophages and neutrophils, up-regulated the IL-12 and KC expression in WT mice, but down-regulated their levels in TLR2 -/-, TLR4 -/- and MyD88 -/- mice. OVA+PM2.5 stimulated neutrophil count in WT mice, but it decreased in TLR2 -/- and TLR4 -/- mice. OVA+PM2.5 also increased the Eotaxin, IL-5, IL-13 and MCP-3 expression levels, and OVA specific IgE and IgG1 in serum also increased in WT group. PM2.5 may activate NF-κB through the TLR2/TLR4/MyD88 signaling pathway and aggravate allergic inflammation of lung in asthmatic mice. The microelements in PM2.5 granules, such as lipopolysaccharide, may be an important factor in the high incidence of asthma.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Availability of data and material

The data used to support the findings of this study are available from the corresponding author upon request.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.