514
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of silver and copper nanoparticle using Spirulina platensis and evaluation of their anticancer activity

, , &
Pages 661-673 | Received 04 Oct 2022, Accepted 24 Dec 2022, Published online: 05 Jan 2023
 

ABSTRACT

The present research displays the green synthesis of stable silver nanoparticles (Ag-NPs) and copper oxide nanoparticles (CuO-NPs). The aqueous solution of Spirulina platensis (blue green algae) source was used as a reducing and capping agent and this study assessed the cytotoxicity of Ag- and CuO-NPs on three cancer cell cultures: A549 (lung cancer), HCT (human colon cancer), Hep2 (laryngeal carcinoma cancer) and normal cell (WISH). For NPs characterization, the UV/Vis spectroscopy was used where their formation and crystallinity were proven with λmax values for Ag- and CuO-NPs of 425 and 234 nm, respectively. According to X-ray diffraction and transmission electron microscopy (TEM), Ag-NPs were spherical in shape (size 2.23–14.68 nm) and CuO-NPs were small (size 3.75–12.4 nm). Zeta potential analysis showed the particles potential, which was recorded by −14.95 ± 4.31 mV for Ag-NPs and −21.63 ± 4.90 mV for CuO-NPs. After that, Ag- and CuO-NPs were assessed for anticancer properties against A549, HCT, Hep2 and WISH. IC50 of Ag-NPs recorded 15.67, 12.94, 3.8 and 10.44 µg/ml for WISH, A549, HCT and Hep2, respectively. IC50 for CuO-NPs was recorded as 32.64, 54.59, 3.98 and 20.56 µg/ml for WISH, A549, HCT and Hep2 cells, respectively. Safety limits for WISH and A549 were achieved 98.64% by 2.44 µg/ml and 83.43% by 4.88 µg/ml of Ag-NPs, and it was found to be 97.94% by 2.44 µg/ml against HCT, while that for Hep2 is 95.9% by 2.44 µg/ml. Concerning the anticancer effect of CuO-NPs, the safety limit was recorded as 88.70% by 2.44 and 98.48% by 4.88 µg/ml against WISH and A549, while HCT reached 89.92% by 2.44 µg/ml and Hep2 was 83.33% by 4.88 µg/ml. Green nanotechnology applications such as Ag-NPs and CuO-NPs have numerous benefits of ecofriendliness and compatibility for biomedical applications such as anticancer effects against cancer cells.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.