Publication Cover
Energy Materials
Materials Science and Engineering for Energy Systems
Volume 13, 2018 - Issue 1
610
Views
0
CrossRef citations to date
0
Altmetric
Original Research Paper

Modified Johnson-Cook description of wide temperature and strain rate measurements made on a nickel-base superalloy

, , &
Pages 157-165 | Received 13 Sep 2016, Accepted 16 Oct 2016, Published online: 04 Nov 2016
 

Abstract

In this study, uniaxial compression experiments of a Nickel-base superalloy is conducted over a wide range of temperatures (298–1073 K) and strain rates (0.1–5200/s) to obtain further understandings of the plastic flow behaviours. The temperature and strain rate effects on the plastic flow behaviour are analysed. The flow stress decreases with increasing temperature below 673 K. Within the temperature range of about 673–873 K, the flow stress varies indistinctively, and even increases slightly with increasing temperature. As the temperature further increases, the flow stress decreases again. The flow stress of the Nickel-base superalloy displays insensitive to strain rate below 800/s and an enormous increase with increasing strain rate in excess of 800/s. Then the effects of temperature and strain rate on the microstructure are discussed. The result shows that high strain rate and high temperature may make the grain boundary of Nickel-base superalloy frail. Taking into account the anomalous temperature and strain rate dependences of flow stress, modified J–C constitutive model is developed. The model is shown to be able to accurately predict the plastic flow behaviour of Nickel-base superalloy over a wide range of temperatures and strain rates.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.