412
Views
1
CrossRef citations to date
0
Altmetric
Original Research Paper

Advanced constitutive modelling for creep-fatigue assessment of high temperature components

ORCID Icon, &
Pages 504-512 | Received 13 Jul 2017, Accepted 26 Oct 2017, Published online: 15 Nov 2017
 

Abstract

Creep-fatigue assessment procedures for the design of high-temperature components should ensure lifetime predictions which are safe but not excessively conservative. Adoption of more accurate assessment procedures than are presently available enable the availability of power plant with greater operating flexibility. Operating flexibility is becoming a key market driver due to the increased interest in the use of intermittent renewable energy sources (e.g. wind, solar) which place focus on a requirement for turbo-machinery to be capable of reduced start-up and shut-down times. This study introduces a creep-fatigue assessment procedure for the design of high-temperature components required for flexible operation. In particular, it considers alloys with high creep-fatigue deformation/damage interaction characteristics such as the advanced martensitic 9–11%Cr steels which are widely used for power plant applications. The procedure takes advantages of advanced constitutive models and implements them in a state-of-the-art mechanical assessment procedure for calculating high-temperature component life times.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.