30
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Pseudomonas aeruginosa displays an altered phenotype in vitro when grown in the presence of mannitol

, &
Pages 115-119 | Accepted 22 Jun 2015, Published online: 04 Jan 2016
 

ABSTRACT

D-mannitol has been approved in dry powder formulation as an effective antimucolytic agent in patients with cystic fibrosis. What is not known is the effect of adding a metabolisable sugar on the biology of chronic bacterial pathogens in the CF lung. Therefore, a series of simple in vitro experiments were performed to examine the effect of adding D-mannitol on the phenotype of the CF respiratory pathogens Pseudomonas aeruginosa and Burkholderia cenocepacia. Clinical isolates (n=86) consisting of P aeruginosa (n=51), B. cenocepacia (n=26), P. putida (n=4), Stenotrophomonas maltophila (n=3) and Pseudomonas spp. (n=2) were examined by supplementing basal nutrient agar with varying concentrations of D-mannitol (0–20% [w/v]) and subsequently examining for any change in microbial phenotype. The effect of supplementation with mannitol was four-fold, namely i) To increase the proliferation and increase in cell density of all CF organisms examined, with an optimal concentration of 2–4% (w/v) D-mannitol. No such increase in cell proliferation was observed when mannitol was substituted with sodium chloride. ii) Enhanced pigment production was observed in 2/51 (3.9%) of the P. aeruginosa isolates examined, in one of the P. putida isolates, and in 3/26 (11.5%) of the B. cenocepacia isolates examined. iii). When examined at 4.0% (w/v) supplementation with mannitol, 11/51 (21.6%) P. aeruginosa isolates and 3/26 (11.5%) B. cenocepacia isolates were seen to exhibit the altered adhesion phenotype. iv). With respect to the altered mucoid phenotype, 5/51 (9.8%) P. aeruginosa produced this phenotype when grown at 4% mannitol. Mucoid production was greatest at 4%, was poor at 10% and absent at 20% (w/v) mannitol. The altered mucoid phenotype was not observed in the B. cenocepacia isolates or any of the other clinical taxa examined. Due consideration therefore needs to be given, where there is altered physiology within the small airways, leading to a potentially altered biological state of the colonising microorganisms in novel inhaled pharmaceutical interventions in CF, particularly those, which are not designated as antimicrobial agents.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.