71
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Expression, purification and secondary structure analysis of Saccharomyces cerevisiae vacuolar membrane H + -ATPase subunit F (Vma7p)

, , , , , , & show all
Pages 283-290 | Published online: 09 Jul 2009
 

Abstract

The vacuolar H + -ATPase is an acid pump found in virtually all eukaryotic cells. It shares a common macromolecular organization with the F 1 F 0 -ATPase, and some V-ATPase subunits are structural and functional homologues of F-ATPase components. However, the vacuolar complex contains several subunits which do not resemble F-ATPase subunits at the sequence level, and which currently have no specific function assigned. One example is subunit F, the Vma7p polypeptide of Saccharomyces cerevisiae. A recombinant form of Vma7p was expressed in Escherichia coli and purified to homogeneity. Mass spectroscopy confirmed a mass of 13 460 Da for Vma7p, and dynamic light scattering showed that the polypeptide was globular and monodisperse even at high concentrations. Analysis of secondary structure by circular dichroism and FTIR showed that Vma7p comprises 30% &#102 -helix and 32-42% &#103 -sheet. The protein fold recognition programme 'Threader 2' produced highly significant matches between Vma7p and five &#102 - &#103 sandwich folds. Relative proportions of secondary structure elements within these folds were broadly consistent with the spectroscopic data. Although Vma7p does not share sequence similarity with the F-ATPase epsilon subunit, the analysis suggests that the polypeptides not only have similar masses and assemble into homologous core complexes, but also share similar secondary structures. It is possible that the two polypeptides are homologous and perform similar functions within their respective ATPases. The production of high yields of homogeneous, folded, monodisperse protein will facilitate high resolution crystallography and NMR spectroscopy studies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.