250
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Membrane and protein properties of freeze-dried mouse platelets

, , , , &
Pages 201-210 | Published online: 09 Jul 2009
 

Abstract

Membrane properties and the overall protein secondary structure of freeze-dried trehalose-loaded mouse platelets were studied using steady state fluorescence anisotropy and Fourier transform infrared spectroscopy (FTIR). FTIR results showed that fresh control mouse platelets have a main phase transition at ~14°C, whereas, freeze-dried platelets exhibited a main phase transition ~12°C. However, the cooperativity of the transition of the rehydrated platelets was greatly enhanced compared to that of control platelets. Anisotropy experiments performed with 1,6 diphenyl-1,3,5 hexatriene (DPH) complemented FTIR results and showed that the lipid order in the core of the membrane was affected by freeze-drying procedures. Similar experiments with trimethyl ammonium 1,6 diphenyl-1,3,5 hexatriene (TMA-DPH), a membrane surface probe, indicated that membrane properties at the membrane/water interface were less affected by freeze-drying procedures than the core of the membrane. Lyophilization did not result in massive protein denaturation, but the overall protein secondary structure was altered, based on in situ assessment of the amide-I and amide-II band profiles. Lyophilization-induced changes to endogenous platelet proteins were further investigated by studying the protein's heat stability. In fresh control platelets, proteins denatured at 42°C, whereas proteins in the rehydrated platelets denatured at 48°C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.