1
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Parameterization for fitting triangular mesh

, , &
Pages 1214-1221 | Received 05 Jan 2006, Published online: 17 Feb 2007
 

Abstract

In recent years, with the development of 3D data acquisition equipments, the study on reverse engineering has become more and more important. However, the existing methods for parameterization can hardly ensure that the parametric domain is rectangular, and the parametric curve grid is regular. In order to overcome these limitations, we present a novel method for parameterization of triangular meshes in this paper. The basic idea is twofold: first, because the isotherms in the steady temperature do not intersect with each other, and are distributed uniformly, no singularity (fold-over) exists in the parameterization; second, a 3D harmonic equation is solved by the finite element method to obtain the steady temperature field on a 2D triangular mesh surface with four boundaries. Therefore, our proposed method avoids the embarrassment that it is impossible to solve the 2D quasi-harmonic equation on the 2D triangular mesh without the parametric values at mesh vetrices. Furthermore, the isotherms on the temperature field are taken as a set of iso-parametric curves on the triangular mesh surface. The other set of iso-parametric curves can be obtained by connecting the points with the same chord-length on the isotherms sequentially. The obtained parametric curve grid is regular, and distributed uniformly, and can map the triangular mesh surface to the unit square domain with boundaries of mesh surface to boundaries of parametric domain, which ensures that the triangular mesh surface or point cloud can be fitted with the NURBS surface.

* Supported by the Major State Basic Research Development Program of China (Grant No. 2004CB719400), and National Natural Science Foundation of China (Grant Nos. 60503057, 60333010, 60021201)

Notes

* Supported by the Major State Basic Research Development Program of China (Grant No. 2004CB719400), and National Natural Science Foundation of China (Grant Nos. 60503057, 60333010, 60021201)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.