850
Views
27
CrossRef citations to date
0
Altmetric
Articles

Multispectral remote sensing for mapping grassland degradation using the key indicators of grass species and edaphic factors

, , &
Pages 477-491 | Received 09 Sep 2014, Accepted 04 Jun 2015, Published online: 01 Jul 2015
 

Abstract

Land degradation is believed to be one of the most severe and widespread environmental problems. In South Africa, large areas of land have been identified as degraded, as shown by the lower vegetation cover. One of the major causes of grassland degradation is change in plant species composition that leads to presence of unpalatable grass species. Some grass species have been successfully used as indicators of different levels of grassland degradation in the country. This paper, therefore explores the possibility of mapping grassland degradation in Cathedral Peak, South Africa, using indicators of grass species and edaphic factors. Multispectral SPOT 5 data were used to produce a grassland degradation map based on the spatial distribution of decreaser (Themeda triandra) and increaser (Hyparrhenia hirta) species. To improve mapping accuracy, soil samples were collected from each species site and analysed for nutrient content. A t-test and machine learning random forest classification algorithm were applied for variable selection and classification using SPOT 5 data and edaphic variables. Results indicated that the decreaser and increaser grass species can be mapped with modest accuracy using SPOT 5 data (overall accuracy of 75.30%, quantity disagreement = 2 and allocation disagreement = 23). The classification accuracy was improved to 88.60%, 1 and 11 for overall accuracy, quantity and allocation disagreements, respectively, when SPOT 5 bands and edaphic factors were combined. The study demonstrated that an approach based on the integration of multispectral data and edaphic variables, which increased the overall classification accuracy by about 13%, is a suitable when adopting remote sensing to monitor grassland degradation.

Acknowledgements

Thanks are due to the South African National Space Agency (SANSA) for making high-quality SPOT 5 data available free of charge for this study. The authors thank Dr Irene Bame and Khatab Abdallah for their advices and assistance on matters pertaining to soil analysis.

Additional information

Funding

This work was supported by UKZN and the National Research Foundation (NRF) research grant.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.