16
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Age discrimination among eruptives of Menengai Caldera, Kenya, using vegetation parameters from satellite imagery

&
Pages 51-59 | Published online: 17 Sep 2008
 

Abstract

This paper reports an investigation to determine the degree to which digitally processed Landsat TM imagery can be used to discriminate among vegetated lava flows of different ages in the Menengai Caldera, Kenya. Since Landsat data display vegetation parameters well, and plant communities vary with type and depth of soil development, selective digital processing techniques were applied to take advantage of these characteristics for discriminating relative age differences of the underlying volcanics. A selective series of five images, consisting of a color‐coded Landsat 5 classification and four color composites, were compared with geologic maps. These included a color coded, modified, unsupervised classification and contrast enhanced, color composite images using TM bands 3–2–1, 4–3–2 and 7–5–3, and the first 3 Karhunen‐Loeve transformation axes that had been generated using 7 Landsat TM bands.

The most recent of more than 70 post‐caldera flows within the caldera are trachytes, which are variably covered by shrubs and subsidiary grasses. Soil development evolves as a function of time, and as such, supports a changing plant community. Progressively older flows exhibit the increasing dominance of grasses over bushes. It was found that the Landsat images correlated well with geologic maps, but that the two mapped age classes could be further subdivided on the basis of different vegetation communities. It is concluded that field maps can be modified, and in some cases corrected by use of such imagery, and that digitally enhanced Landsat imagery can be a useful aid to field mapping in similar terrains.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.