191
Views
0
CrossRef citations to date
0
Altmetric
Selected Papers from Copenhagen IABSE Conference 2018

Bearing Capacity of Transversely Prestressed Concrete Deck Slabs

(Assistant Professor) ORCID Icon, , &
 

Abstract

The Netherlands has a large number of thin, transversely prestressed concrete bridge decks, cast in-situ between flanges of prestressed concrete girders dating back to the 1960s and 1970s. These bridges are critical in shear when analyzed using EN 1992-1-1:2005; however, in reality, they show no significant signs of distress, possibly because of residual bearing (punching shear) capacity arising from compressive membrane action. Since these bridges are old, it is an astute approach to check whether they can be used for a few more decades, provided they are safe and reliable against modern traffic loads. The results could then be applied to a wider range of structures, especially in developing countries facing economic constraints. A prototype bridge was selected and experimental, numerical and theoretical approaches were used to investigate its bearing capacity. Respective coefficients of variation of 11% and 9% were obtained when the experimental and the finite element analysis punching loads were compared with the theoretical results. This led to the conclusion that the existing transversely prestressed concrete bridge decks still have sufficient bearing capacity and considerable cost savings can be made if compressive membrane action is considered in the analysis.

Acknowledgements

The authors wish to express their gratitude and sincere appreciation to Rijkswaterstaat, Ministry of Infrastructure and the Environment, The Netherlands, and the University of Engineering and Technology, Lahore, Pakistan, for financial contributions during the course of this research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Rijkswaterstaat, Netherlands.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.