112
Views
9
CrossRef citations to date
0
Altmetric
Articles

A positive finite-difference model in the computational simulation of complex biological film models

Pages 548-569 | Received 07 May 2013, Accepted 30 Oct 2013, Published online: 04 Dec 2013
 

Abstract

In this work, we design a linear, two-step, finite-difference method to approximate the solutions of a biological system that describes the interaction between a microbial colony and a surrounding substrate. The model is a system of four partial differential equations with nonlinear diffusion and reaction, and the colony is formed by an active portion, an inert component and the contribution of extracellular polymeric substances. In this work, we extend the computational approach proposed by Eberl and Demaret [A finite difference scheme for a degenerated diffusion equation arising in microbial ecology, Electr. J. Differ. Equ. 15 (2007) pp. 77–95], in order to design a numerical technique to approximate the solutions of a more complicated model proposed in the literature. As we will see in this work, this approach guarantees that positive and bounded initial solutions will evolve uniquely into positive and bounded, new approximations. We provide numerical simulations to evince the preservation of the positive character of solutions.

Acknowledgements

The author expresses his deepest gratitude to the anonymous reviewers for all their invaluable criticisms and suggestions, which contributed greatly to improve the quality of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.