123
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

The impacts of flow on chemical communication strategies and fight dynamics of crayfish

, , , &
Pages 245-258 | Received 29 May 2006, Accepted 18 Aug 2006, Published online: 23 Nov 2006
 

Abstract

Signal transmission is influenced by the physics of an environment. Consequently, a physical effect on sensory signals can influence how animals send or sample sensory information. Habitat-specific physics may constrain or enhance signal transmission (e.g. sound transmission in a flowing river versus a still pond) and provide a mechanism for the evolution of sensory biases. This study investigated how the transmission of chemically mediated social signals in crayfish is influenced by two different aquatic environments. Agonistic bouts between crayfish were performed under lotic (flowing water) and lentic (nonflowing, still water) conditions. When crayfish (Orconectes rusticus) collected from a lotic system (river) interacted under lotic conditions, we noted that dominant O. rusticus spent more time upstream than subordinate O. rusticus. Orconectes rusticus positioned themselves randomly and spent equal amounts of time with respect to upstream and downstream in the nonflowing environment. We tested another species, Orconectes virilis, collected from a nonflowing environment (lake) and they showed no positional preference when tested in flow. Additionally, both O. rusticus and O. virilis took longer to reach high fight intensities under flow conditions. It was possible to visualize O. rusticus urine release, and they released urine more often when upstream of an opponent in a flow environment during these agonistic bouts. These results suggest that O. rusticus collected from lotic environments release urine to maximize the transmission of chemical cues to a fight opponent. It appears that crayfish may adapt their signalling processes based upon their long-term ambient environments.

Acknowledgments

The authors would like to thank the Laboratory for Sensory Ecology, NSF (IBN #0131320) to P.A.M., and Sigma Xi Grant-in-Aid of Research to D.A.B. (#12030027) for their contributions to this research. All experiments comply with the current laws and protocols concerning invertebrate care in the United States.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.