109
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Application of Dipotassium Glycoxides–Activated 18-Crown-6 for the Synthesis of Poly(propylene oxide) with Increased Molar Mass

, , , , , , & show all
Pages 206-222 | Received 27 Oct 2014, Accepted 06 Nov 2014, Published online: 02 Apr 2015
 

Abstract

Mono- and dipotassium salts of dipropylene glycol were applied for the polymerization of propylene oxide in mild conditions, i.e., tetrahydrofuran solution at ambient temperature. The structure of polymers was investigated by use of 13C NMR and MALDI-TOF techniques. The structure depends strongly on the kind of initiator and additives that are used such as coronand 18-crown-6 and dipropylene glycol. The lowest unsaturation, represented by allyloxy starting groups, has the polymer obtained by use of monopotassium salt without the ligand. The highest unsaturation degree is for the polymer synthesized in the presence of dipotassium salt–activated 18-crown-6. This polymer, obtained at high initial monomer concentration and low initial concentration of initiator, consists of two fractions, i.e., a low molar mass fraction (Mn = 9400) containing mainly macromolecules with alkoxide starting and end groups and a much higher molar mass fraction (Mn = 29500 g/mol) containing macromolecules with allyloxy starting groups and alkoxide or hydroxyl end groups. Addition of free glycol to this system decreases the molar mass of polymers. Similar results were obtained by use of dipotassium salts of other glycols. The mechanisms of the studied processes are discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.