784
Views
59
CrossRef citations to date
0
Altmetric
Articles

Influence of particle size and particle loading on mechanical and dielectric properties of biochar particulate-reinforced polymer nanocomposites

, &
Pages 462-477 | Received 02 Mar 2016, Accepted 17 Mar 2016, Published online: 12 Apr 2016
 

ABSTRACT

This research work emphasizes using pulverized biochar obtained by the pyrolysis of rice husk as a particulate reinforcement in unsaturated polyester matrix. The influence of particle size and particle loading on the mechanical and dielectric properties of particulate composites were investigated. The mean size of particles obtained through pulverizing using ball mill varied from 510 to 45 nm when milled for a duration ranging from 6 to 30 h. The particle loading in the composite varied from 0.5 to 2.5 wt%. The impact strength of the specimen having particle loading of 2.5 wt% with 45 nm particle size increased by 77.50%, and its dielectric constant increased by 7% when compared to that of cured pure resin; however, the tensile strength decreased. The biochar particles were subjected to X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), and atomic force microscopy (AFM) analysis for characterization. Morphological studies were performed on tested samples by scanning electron microscope.

Acknowledgments

The authors gratefully acknowledge Dr. Sivanthi Aditanar College of Engineering, Tiruchendur; Government College of Engineering, Tirunelveli; and Kalasalingam University, Krishnankoil, Tamil Nadu, India, for providing research facilities.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.