329
Views
16
CrossRef citations to date
0
Altmetric
Articles

Different catalytic systems on hydroxyl-terminated GAP and PET with poly-isocyanate: Curing kinetics study using dynamic in situ IR spectroscopy

, , &
Pages 495-503 | Received 07 Mar 2016, Accepted 04 Apr 2016, Published online: 02 May 2016
 

ABSTRACT

Reactions of hydroxyl-terminated glycidyl azide polymer (GAP) or poly(ethylene oxide-co-tetrahydrofuran) (PET) polymers with poly-isocyanate (N100) were monitored by dynamic in situ Fourier transform infrared spectroscopy. The influence of catalytic systems on the cure kinetics of polyurethane reaction was investigated. From the comparison between GAP/N100 and PET/N100 systems, it was found that primary and secondary hydroxyl groups were differentiated due to the effects of steric hindrance. Using Arrhenius law and Eyring equation, the activation parameters of polyurethane reaction were calculated at different catalytic systems. The negative value of the activation entropy demonstrated an associative mechanism within the transition state.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.