62
Views
0
CrossRef citations to date
0
Altmetric
Articles

Enhanced characterization of the chemical structure of high-density polyethylene by size exclusion/thermal fractionation on poly(styrene-co-divinylbenzene) columns

ORCID Icon &
Pages 100-111 | Received 05 Sep 2022, Accepted 30 Nov 2022, Published online: 14 Dec 2022
 

Abstract

Following the recent trends in polymer analysis, a novel fractionation method was developed using xylene as an alternative to trichlorobenzene (TCB) and offering a more exhaustive characterization of the chemical structure of high-density polyethylene (HDPE). The method is based on a linearized evaporative light scattering detector (LinELSD), which has a much better signal-to-noise for the solutions of HDPE in xylene, as compared with the traditional differential refractive index (DRI) and infrared (IR) detectors. The low viscosity of xylene opens the possibility to use the poly(styrene-co-divinylbenzene) (PS-DVB) columns not only for gel permeation chromatography (GPC) but also for temperature-rising elution fractionation (TREF). An immediate application is the simultaneous measurement of the wax fraction’s content and molecular weight (MW) in HDPE. Furthermore, there are strong indications that the thermogram profile corresponding to the isothermal extraction at 70 °C provides a fingerprint of the HDPE synthesis catalyst.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.