90
Views
16
CrossRef citations to date
0
Altmetric
Review

Chemoenzymatic synthesis of enantiopure 1,4-dihydropyridine derivatives

, , &
Pages 231-252 | Received 17 May 2004, Published online: 11 Jul 2009
 

Abstract

1,4-Dihydropyridines possess a broad range of biological activities, such as the ability to control the influx of calcium into cells, as well as neuroprotective, antineurodegenerative, cognition and memory enhancing, anti-inflammatory, antiviral and many other properties. Chirality plays an important role in the biological activity of 1,4-dihydropyridines. The chemoenzymatic synthesis of 1,4-dihydropyridine derivatives in enantiopure form as the key intermediates for the synthesis of enantiopure drugs and chiral analogues of symmetrical drugs has become an advantageous alternative to the other synthetic methods. Hydrolytic enzymes, as efficient chemo-, regio- and stereoselective biocatalysts have been successfully applied for the asymmetrisation or kinetic resolution of various 1,4-dihydropyridine derivatives. Several synthetic strategies to overcome the inactivity of hydrolytic enzymes towards 1,4-dihydropyridine carboxylic acids have been developed during the last decade, often based on the introduction of a spacer between an enzymatically labile group and the 1,4-DHP nucleus. Good to excellent enantioselectivities can be obtained by careful optimisation of the reaction temperature and the organic (co)solvent used in the enzymatic transformations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.