99
Views
15
CrossRef citations to date
0
Altmetric
ORIGINAl ARTICLE

Morphological, biochemical and kinetic properties of lipase from Candida rugosa immobilized in zirconium phosphate

, , &
Pages 393-400 | Published online: 11 Jul 2009
 

Abstract

Zirconium phosphate (ZrP), a low-cost inorganic material with well-defined physicochemical properties, was successfully used as support for immobilizing Candida rugosa lipase by covalent bonding. The immobilized derivative showed high catalytic activity in both aqueous and non-aqueous media. Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy measurements demonstrated that the ZrP fulfilled the morphological requirements for use as a matrix for immobilizing lipases. The free and immobilized lipases were compared in terms of pH, temperature and thermal stability. The immobilized lipase had a higher pH optimum (7.5) and higher optimum temperature (50°C) than the free lipase. Immobilization also increased the thermal stability. The hydrolysis of p-nitrophenyl palmitate (pNPP) by immobilized lipase, examined at 37°C, followed Michaelis–Menten kinetics. Values for Km=1.18 µM and Vmax=325Umg−1 indicated that the immobilized system was subject to mass transfer limitations. The immobilized derivative was also tested under repetitive reaction batches in both ester hydrolysis and synthesis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.