121
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Production of (R)-3-quinuclidinol by a whole-cell biocatalyst with high efficiency

, , , , , , & show all
Pages 316-323 | Received 21 Apr 2017, Accepted 26 Oct 2017, Published online: 10 Nov 2017
 

Abstract

Optically pure (R)-3-quinuclidinol [(R)-3-Qui] is widely used as a chiral building block for producing various antimuscarinic agents. An asymmetric bioreduction approach using 3-quinuclidinone reductases is an effective way to produce (R)-3-Qui. In this study, a biocatalyst for producing (R)-3-Qui was developed by using Escherichia coli that coexpressed Kaistia granuli (KgQR) and mutant glucose dehydrogenase (GDH). KgQR catalyses the synthesis of (R)-3-Qui through the efficient reduction of 3-quinuclidinone. The specific activity of recombinant KgQR was 254 U/mg, and the Michaelis–Menten constant (Km) for 3-quinuclidinone was 0.51 mM. The thermal stability of KgQR was relatively high compared with ArQR. Approximately 73% of the residual activity remained after incubation in 0.2 M potassium phosphate buffer (KPB) (pH 7.0) for 8 h at 30 °C. In addition, 80% residual activity remained for the double-mutant GDH (Q252L and E170K) after incubation in a buffer (pH 7.0) for 8 h at 30 and 40 °C. 3-Quinuclidinone (242 g/L) can be reduced to (R)-3-Qui in 3 h by coexpressing KgQR and mutant GDH in E. coli. The conversion rate reached 80.6 g/L/h, which is the highest reported to date. The results demonstrates that this whole-cell biocatalyst will have a great potential in industrial manufacturing.

Disclosure statement

The authors declare that they have no potential conflict of interests.

Additional information

Funding

This study was supported by the Science Foundation of Hebei Science Academy [Grant Nos. 12342, 15004022 and 2016023290-01] and Hebei High Technology Plan [Grant No. 16212801D].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.