192
Views
3
CrossRef citations to date
0
Altmetric
Short Communication

Metabolic perturbation of acrylate pathway in Lactobacillus plantarum

& ORCID Icon
Pages 310-316 | Received 24 Dec 2018, Accepted 03 Apr 2019, Published online: 10 May 2019
 

Abstract

Engineering microbes with heterologous pathway for production of bio-based products has received considerable attention. Reconstituting such non-native pathway in addition to desired product formation often brings an allosteric modulation in enzymes competing at fragile nodes that result in by-product redistribution, in order to retain energy and redox balance. This work, Lactobacillus plantarum engineered with acrylate pathway for propionate production was studied under similar perspectives. Upon expression, the heterologous pathway did not result in propionic acid production under standard glucose concentration of 20 g/L, but 0.01 mM of propionate was formed when grown under low glucose concentration of 1 g/L. Further analysis of secreted metabolites with increased glucose concentration of 10 and 30 g/L remained futile towards propionate formation but showed reorientation in pyruvate metabolism which was related to the control imposed by the host to regulate the hidden constraints caused by gene perturbation. Further, it was ensured that the limitation of supplements did not play any functional role in inhibiting propionic acid synthesis but still followed similar metabolic pattern which was quite unclear though interpreted to certain extent. Thus, the findings gave insights into physiological and metabolic capabilities of Lactobacillus plantarum that at least in principle can be used to enhance the strain performance for increased propionic acid production.

Acknowledgements

The authors gratefully acknowledge Prof. Michiel Kleerebezem, Wageningen University & Research, NIZO Food Research, The Netherlands, for providing the bacterial strain Lactobacillus plantarum NZ7100. We also thank Department of Biotechnology, India for funding part of this research. The first author would like to thank University Grant Commission, India for providing fellowship through UGC-BSR scheme.

Disclosure statement

The authors declare that they have no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.