189
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Finite Element Analysis of Interbody Cages in a Human Lumbar Spine

&
Pages 257-272 | Received 11 Dec 1997, Published online: 28 Mar 2007
 

Abstract

An innovative surgical procedure is vertebral stabilization by interbody cages. It is currently being used to separate and stabilize vertebral bodies and to promote bony fusion of the vertebrae onto or through the cages. This surgery, at some spine levels, can be performed through a laparoscope as an outpatient procedure with low morbidity. Because the procedure is new, little structural information is available on the interbody cages. The objective of this study was to evaluate the human lumbar spine stabilized by interbody cages biomechanically. The finite element method was used to compare cage designs by considering stresses in the cage and in the bone as well as relative displacements between the cage and the adjacent bone at the interface. The biomechanical evaluation considered different bone densities and considered axial, torsional, and bending loads on the lumbar spine. Stress analysis predicts local regions of stress concentration that could be damaging to cancellous bone and will likely require a remodeling response for local damage. This study predicts relative micromotion that could cause the bone resorption and fibrous tissue formation on the contact surfaces of the cage. The geometric constraints caused by the use of two cages will reduce the relative motion and therefore be more likely to allow bone ingrowth at the posterocentral contact region. Finite element analysis suggests that cages are a promising method for separation and stabilization of the vertebral bodies.

Additional information

Notes on contributors

YOUNG KIM

Corresponding author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.