209
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Finite element simulation of spinal deformities correction by in situ contouring technique

, , , , &
Pages 331-337 | Received 17 Jan 2005, Published online: 21 Aug 2006
 

Abstract

Biomechanical models have been proposed in order to simulate the surgical correction of spinal deformities. With these models, different surgical correction techniques have been examined: distraction and rod rotation. The purpose of this study was to simulate another surgical correction technique: the in situ contouring technique. In this way, a comprehensive three-dimensional Finite Element (FE) model with patient-specific geometry and patient-specific mechanical properties was used. The simulation of the surgery took into account elasto–plastic behavior of the rod and multiple moments loading and unloading representing the surgical maneuvers. The simulations of two clinical cases of hyperkyphosis and scoliosis were coherent with the surgeon's experience. Moreover, the results of simulation were compared to post-operative 3D measurements. The mean differences were under 5° for vertebral rotations and 5 mm for spinal lines. These simulations open the way for future predictive tools for surgical planning.

Acknowledgements

The authors would like to thank the teams of the radiological and orthopedic departments of Hôpitaux Universitaires de Strasbourg, France. Funding was received from Eurosurgical, Beaurains, France and from AGIRS association, Strasbourg, France.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.