57
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A solution method for the determination of cardiac potential distributions with an alternating current sourceFootnoteThis work was supported by the Australian Research Council.

, &
Pages 223-233 | Received 22 Nov 2006, Accepted 21 Sep 2007, Published online: 05 Jun 2008
 

Abstract

A recently presented solution method for the bidomain model (Johnston et al. 2006), which involves the application of direct current for studying electrical potential in a slab of cardiac tissue, is extended here to allow the use of an applied alternating current. The advantage of using AC current, in a four-electrode method for determining cardiac conductivities, is that instead of using ‘close’ and ‘wide’ electrode spacings to make potential measurements, increasing the frequency of the AC current redirects a fraction of the current from the extracellular space into the intracellular space.

The model is based on the work of Le Guyader et al. (2001), but is able to include the effects of the fibre rotation between the epicardium and the endocardium on the potentials. Also, rather than using a full numerical technique, the solution method uses Fourier series and a simple one dimensional finite difference scheme, which has the advantage of allowing the potentials to be calculated only at points, such as the measuring electrodes, where they are required.

The new alternating current model, which includes intracellular capacitance, is used with a particular four-electrode configuration, to show that the potential measured is affected by changes in fibre rotation. This is significant because it indicates that it is necessary to include fibre rotation in models, which are to be used in conjunction with measuring arrays that are more complex than those involving simply surface probes or a single vertical probe.

Notes

This work was supported by the Australian Research Council.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.