856
Views
76
CrossRef citations to date
0
Altmetric
Original Articles

Micromechanical modelling of skeletal muscles based on the finite element method

&
Pages 489-504 | Received 23 Jul 2007, Accepted 30 Sep 2007, Published online: 15 Sep 2008
 

Abstract

In the present paper, a new concept for the modelling of skeletal muscles is proposed. An important aspect is the fact that the concept is micromechanically motivated. At the level of the contractile muscle fibres we incorporate the behaviour of the smallest possible unit, the so-called sarcomere, also known as microbiological engine. The contractile fibres (active part of the material) are surrounded by a soft tissue network (passive part of the material). One fundamental advantage of micromechanical approaches in general is the fact that the number of material parameters can be noticeably reduced and the remaining parameters can be usually interpreted physically. The chosen modelling strategy enables the efficient transport of the known information about physiological processes in the fibre to the 3D macroscopic level where, e.g. the dependence of muscle contraction on the stimulus rate is studied. The paper closes with investigations of quasistatic as well as dynamic simulation applied on idealised and non-idealised muscle geometries.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.