191
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Muscle forces during running predicted by gradient-based and random search static optimisation algorithms

, , &
Pages 217-225 | Received 05 Oct 2007, Accepted 24 Aug 2008, Published online: 25 Feb 2009
 

Abstract

Muscle forces during locomotion are often predicted using static optimisation and SQP. SQP has been criticised for over-estimating force magnitudes and under-estimating co-contraction. These problems may be related to SQP's difficulty in locating the global minimum to complex optimisation problems. Algorithms designed to locate the global minimum may be useful in addressing these problems. Muscle forces for 18 flexors and extensors of the lower extremity were predicted for 10 subjects during the stance phase of running. Static optimisation using SQP and two random search (RS) algorithms (a genetic algorithm and simulated annealing) estimated muscle forces by minimising the sum of cubed muscle stresses. The RS algorithms predicted smaller peak forces (42% smaller on average) and smaller muscle impulses (46% smaller on average) than SQP, and located solutions with smaller cost function scores. Results suggest that RS may be a more effective tool than SQP for minimising the sum of cubed muscle stresses in static optimisation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.