183
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

A theoretical model to study the effects of cellular stiffening on the damage evolution in deep tissue injury

, &
Pages 585-597 | Received 09 Dec 2008, Accepted 26 Jan 2009, Published online: 30 Sep 2009
 

Abstract

Pressure induced deep tissue injury (DTI) is a severe form of pressure ulcers that is hard to detect in early stages and difficult to prevent and treat. High prevalence figures are partly due to a lack of understanding of pathological pathways involved in DTI. The aim of this study was to investigate, whether changes in material properties of damaged tissue can play a role in DTI aetiology. A numerical model was developed based on muscle microstructure and tissue engineering experiments. A time dependent damage law was proposed and stiffening of dead cells incorporated. The results obtained in the microstructural investigations were used to include the stiffening information in a pre-existing macroscopic model based on animal experiments, which correlated strains to tissue damage measured in the tibialis anterior muscle in rat limbs. With the modelling approach employed in this paper, the damaged area in the rat limb models increased up to 1.65-fold and the rate of damage progression was up to 2.1 times higher in microstructural simulations when stiffening was included.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.