165
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

A novel approach to evaluate abdominal coactivities for optimal spinal stability and compression force in lifting

, , &
Pages 735-745 | Received 28 Nov 2008, Accepted 15 Mar 2009, Published online: 01 May 2009
 

Abstract

A novel optimisation algorithm is developed to predict coactivity of abdominal muscles while accounting for both trunk stability via the lowest buckling load (P cr) and tissue loading via the axial compression (F c). A nonlinear multi-joint kinematics-driven model of the spine along with the response surface methodology are used to establish empirical expressions for P cr and F c as functions of abdominal muscle coactivities and external load magnitude during lifting in upright standing posture. A two-component objective function involving F c and P cr is defined. Due to opposite demands, abdominal coactivities that simultaneously maximise P cr and minimise F c cannot exist. Optimal solutions are thus identified while striking a compromise between requirements on trunk stability and risk of injury. The oblique muscles are found most efficient as compared with the rectus abdominus. Results indicate that higher abdominal coactivities should be avoided during heavier lifting tasks as they reduce stability margin while increasing spinal loads.

2000 Mathematics Subject Classification::

Acknowledgement

The work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC-Canada).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.