176
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Sensitivity analysis of an energetic muscle model applied at whole body level in recumbent pedalling

, &
Pages 527-538 | Received 09 Aug 2010, Accepted 04 Dec 2010, Published online: 07 Mar 2011
 

Abstract

Musculoskeletal models are used in order to describe and analyse the mechanics of human movement. In order to get a complete evaluation of the human movement, energetic muscle models were developed and were shown to be promising.

The aim of this work is to determine the sensitivity of muscle mechanical and energetic model estimates to changes in parameters during recumbent pedalling.

Inputs of the model were electromyography and joint angles, collected experimentally on one participant. The sensitivity analysis was performed on muscle-specific tension, physiological cross-sectional area, muscle maximal force, tendon rest length and percentage of fast-twitch fibres using an integrated sensitivity ratio. Soleus, gastrocnemius, vasti, gluteus and medial hamstrings were selected for the analyses.

The energetic model was found to be always less sensitive to parameter changes than the mechanical model. Tendon slack length was found to be the most critical parameter for both energetic and mechanical models even if the effect on the energetic output was smaller than on muscle force and joint moments.

Notes

Additional information

Notes on contributors

R. Stagni

1

G. Gnudi

2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.