283
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

The development, calibration and validation of a numerical total knee replacement kinematics simulator considering laxity and unconstrained flexion motions

&
Pages 585-593 | Received 20 Oct 2010, Accepted 22 Dec 2010, Published online: 19 May 2011
 

Abstract

Kinematics testing is essential during the development of total knee replacement (TKR) designs. Although computational analysis cannot replace physical testing, it offers repeatability and consistency at a much lower cost and shorter time, making it an excellent complement to experiments. Previous numerical models have been limited by several factors: the validity of the models is usually only considered for a single TKR design, friction models are typically overly simplified and the determination of simulation parameters is often inadequate, or tedious and expensive. The objective of this study is to develop, calibrate and validate a TKR kinematics simulation considering multiple TKR geometries, an accurate friction model and simulation parameters determined using a systematic optimisation method. The calibrated model was able to predict TKR kinematics for different TKR geometries, and is ideal for screening new implant designs, reducing the number of experiments required at the design stage.

Acknowledgements

The authors would like to acknowledge the researchers at the Human Mobility Research Centre at Kingston General Hospital for their help and for allowing them to use their equipment and facilities.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.