501
Views
6
CrossRef citations to date
0
Altmetric
Article

A femoral model with all relevant muscles and hip capsule ligaments

, , , , &
Pages 669-677 | Received 17 Apr 2011, Accepted 11 Oct 2011, Published online: 08 Dec 2011
 

Abstract

In order to evaluate stabilisation systems in trochanteric femoral fractures with finite element (FE) analysis, a realistic model is required. For this purpose, a new model of a femur with all the relevant muscles and the hip capsule ligaments is set up. The pelvic and tibial bones are modelled as rigid bodies so as to take all the muscles attached to the femur into account. Fracture zones in the proximal femur are defined. Following the modelling of the geometry, the isotropic material behaviour and the load application, a numerical calculation of the femur is carried out. The static iterated FE simulation shows good agreement with in vivo data for the one-leg-stance phase during walking and Pauwels' one-leg stance regarding the displacement of the femoral head (2.9 and 5.2 mm, respectively) and the resulting hip force (253% and 294% bodyweight, respectively). In the modelled fracture zones without osteosynthesis, shear is higher than axial strain. The reduction of shear among others could be a criterion for judging the quality of a stabilisation implant.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.