243
Views
7
CrossRef citations to date
0
Altmetric
Article

Simulation of the behaviour of the L1 vertebra for different material properties and loading conditions

, &
Pages 736-746 | Received 19 Jun 2011, Accepted 27 Oct 2011, Published online: 08 Dec 2011
 

Abstract

Three-dimensional finite element models of the thoracolumbar junction (T12–L2) and isolated L1 vertebra were developed to investigate the role of material properties and loading conditions on vertebral stresses and strains to predict fracture risk. The geometry of the vertebrae was obtained from computed tomography images. The isolated vertebra model included an L1 vertebra loaded through polymethylmethacrylate plates located at the top and bottom of the vertebra, and the segment model included T12 to L2 vertebrae and seven ligaments, fibrous intervertebral discs and facet joints. Each model was examined with both homogeneous and spatially varying bone tissue properties. Stresses and strains were compared for uniform compression and flexion. Including material heterogeneity remarkably reduced the stiffness of the isolated L1 vertebra and increased the magnitudes of the minimum principal strains and stresses in the mid-transverse section. The stress and strain distributions further changed when physiological loading was applied to the L1 vertebra. In the segment models, including heterogeneous material properties increased the magnitude of the minimum principal strain by 158% in the centre of the mid-transverse section. Overall, the inclusion of heterogeneity and physiological loading increased the magnitude of the strains up to 346% in flexion and 273% in compression.

Acknowledgements

We thank Kirk Gunsallus and Jason Long of Cornell University for their assistance with the development of the FE models. We are grateful for the support provided by NIH grant AR053571.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.