1,030
Views
2
CrossRef citations to date
0
Altmetric
Articles

Zirconia-based dental crown to support a removable partial denture: a three-dimensional finite element analysis using contact elements and micro-CT data

, , , , , , & show all
Pages 1744-1752 | Received 16 Jul 2014, Accepted 03 Aug 2014, Published online: 21 Oct 2014
 

Abstract

Veneer fracture is the most common complication in zirconia-based restorations. The aim of this study was to evaluate the mechanical behavior of a zirconia-based crown in a lower canine tooth supporting removable partial denture (RPD) prosthesis, varying the bond quality of the veneer/coping interface. Microtomography (μCT) data of an extracted left lower canine were used to build the finite element model (M) varying the core material (gold core – MAu; zirconia core – MZi) and the quality of the veneer/core interface (complete bonded – MZi; incomplete bonded – MZi-NL). The incomplete bonding condition was only applied for zirconia coping by using contact elements (Target/Contact) with 0.3 frictional coefficients. Stress fields were obtained using Ansys Workbench 10.0. The loading condition (L = 1 N) was vertically applied at the base of the RPD prosthesis metallic support towards the dental apex. Maximum principal (σmax) and von Mises equivalent (σvM) stresses were obtained. The σmax (MPa) for the bonded condition was similar between gold and zirconia cores (MAu, 0.42; MZi, 0.40). The incomplete bonded condition (MZi-NL) raised σmax in the veneer up to 800% (3.23 MPa) in contrast to the bonded condition. The peak of σvM increased up to 270% in the MZi-NL. The incomplete bond condition increasing the stress in the veneer/zirconia interface.

Additional information

Funding

This study was supported by the São Paulo Research Foundation (FAPESP, Brazil) [grant number 2008/00209-9]; Foundation for the Coordination of Higher Education and Graduate Training (CAPES, Brazil) [grant number BEX 2325-05-5].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.