735
Views
19
CrossRef citations to date
0
Altmetric
Articles

Assessment of turbulence models for pulsatile flow inside a heart pump

, &
Pages 271-285 | Received 24 Jun 2014, Accepted 02 Feb 2015, Published online: 27 Mar 2015
 

Abstract

Computational fluid dynamics (CFD) is applied to study the unsteady flow inside a pulsatile pump left ventricular assist device, in order to assess the sensitivity to a range of commonly used turbulence models. Levels of strain and wall shear stress are directly relevant to the evaluation of risk from haemolysis and thrombosis, and thus understanding the sensitivity to these turbulence models is important in the assessment of uncertainty in CFD predictions. The study focuses on a positive displacement or pulsatile pump, and the CFD model includes valves and moving pusher plate. An unstructured dynamic layering method was employed to capture this cyclic motion, and valves were simulated in their fully open position to mimic the natural scenario, with in/outflow triggered at control planes away from the valves. Six turbulence models have been used, comprising three relevant to the low Reynolds number nature of this flow and three more intended to investigate different transport effects. In the first group, we consider the shear stress transport (SST) model in both its standard and transition-sensitive forms, and the ‘laminar’ model in which no turbulence model is used. In the second group, we compare the one equation Spalart–Almaras model, the standard two equation and the full Reynolds stress model (RSM). Following evaluation of spatial and temporal resolution requirements, results are compared with available experimental data. The model was operated at a systolic duration of 40% of the pumping cycle and a pumping rate of 86 BPM (beats per minute). Contrary to reasonable preconception, the ‘transition’ model, calibrated to incorporate additional physical modelling specifically for these flow conditions, was not noticeably superior to the standard form of the model. Indeed, observations of turbulent viscosity ratio reveal that the transition model initiates a premature increase of turbulence in this flow, when compared with both experimental and higher order numerical results previously reported in the literature. Furthermore, the RSM is indicated to provide the most accurate prediction over much of the flow, due to its ability to more correctly account for three-dimensional effects. Finally, the clinical relevance of the results is reported along with a discussion on the impact of such modelling uncertainties.

Acknowledgements

The authors acknowledge the assistance given by IT Services and the use of the Computational Shared Facility at the University of Manchester.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes

1. It is noted that the laminar model does not provide this quantity, while for RSM this must be computed a posteriori as

2. In the figure, contours are displayed in the range for clarity, but the location of the maxima proximal to the aortic valve coincideS with the locations where these high values were found.

Additional information

Funding

The financial support from the Higher committee for education development in Iraq and University of Wasit is greatly acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.