946
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Numerical study of wall shear stress-based descriptors in the human left coronary artery

&
Pages 1443-1455 | Received 05 Jun 2015, Accepted 29 Jan 2016, Published online: 17 Feb 2016
 

Abstract

The present work is about the application of wall shear stress descriptors – time averaged wall shear stress (TAWSS), oscillating shear index (OSI) and relative residence time (RRT) – to the study of blood flow in the left coronary artery (LCA). These descriptors aid the prediction of disturbed flow conditions in the vessels and play a significant role in the detection of potential zones of atherosclerosis development. Hemodynamic descriptors data were obtained, numerically, through ANSYS® software, for the LCA of a patient-specific geometry and for a 3D idealized model. Comparing both cases, the results are coherent, in terms of location and magnitude. Low TAWSS, high OSI and high RRT values are observed in the bifurcation – potential zone of atherosclerosis appearance. The dissimilarities observed in the TAWSS values, considering blood as a Newtonian or non-Newtonian fluid, releases the importance of the correct blood rheologic caracterization. Moreover, for a higher Reynolds number, the TAWSS values decrease in the bifurcation and along the LAD branch, increasing the probability of plaques deposition. Furthermore, for a stenotic LCA model, very low TAWSS and high RRT values in front and behind the stenosis are observed, indicating the probable extension, in the flow direction, of the lesion.

Acknowledgements

The authors gratefully acknowledge the financial support of Fundação para a Ciência e Tecnologia (FCT) under project PTDC/EME-MFE/102974/2008 and post-doctoral grant SFRH/BPD/78262/2011. POCTI (FEDER) also supported this work via CEFT. The authors also thank all the cardiovascular medical team of Vila Nova de Gaia/Espinho Hospital.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.