1,025
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Interactive graph-cut segmentation for fast creation of finite element models from clinical ct data for hip fracture prediction

, , , , , , , , , , & show all
Pages 1693-1703 | Received 19 Jan 2015, Accepted 18 Apr 2016, Published online: 10 May 2016
 

Abstract

In this study, we propose interactive graph cut image segmentation for fast creation of femur finite element (FE) models from clinical computed tomography scans for hip fracture prediction. Using a sample of N = 48 bone scans representing normal, osteopenic and osteoporotic subjects, the proximal femur was segmented using manual (gold standard) and graph cut segmentation. Segmentations were subsequently used to generate FE models to calculate overall stiffness and peak force in a sideways fall simulations. Results show that, comparable FE results can be obtained with the graph cut method, with a reduction from 20 to 2–5 min interaction time. Average differences between segmentation methods of 0.22 mm were not significantly correlated with differences in FE derived stiffness (R2 = 0.08, p = 0.05) and weakly correlated to differences in FE derived peak force (R2 = 0.16, p = 0.01). We further found that changes in automatically assigned boundary conditions as a consequence of small segmentation differences were significantly correlated with FE derived results. The proposed interactive graph cut segmentation software MITK-GEM is freely available online at https://simtk.org/home/mitk-gem.

View correction statement:
Corrigendum

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.