265
Views
2
CrossRef citations to date
0
Altmetric
Articles

RGRNA: prediction of RNA secondary structure based on replacement and growth of stems

, , , , , & show all
Pages 1261-1272 | Received 21 Sep 2016, Accepted 06 Jun 2017, Published online: 21 Jul 2017
 

Abstract

Owing to their structural diversity, RNAs perform many diverse biological functions in the cell. RNA secondary structure is thus important for predicting RNA function. Here, we propose a new combinatorial optimization algorithm, named RGRNA, to improve the accuracy of predicting RNA secondary structure. Following the establishment of a stempool, the stems are sorted by length, and chosen from largest to smallest. If the stem selected is the true stem, the secondary structure of this stem when combined with another stem selected at random will have low free energy, and the free energy will tend to gradually diminish. The free energy is considered as a parameter and the structure is converted into binary numbers to determine stem compatibility, for step-by-step prediction of the secondary structure for all combinations of stems. The RNA secondary structure can be predicted by the RGRNA method. Our experimental results show that the proposed algorithm outperforms RNAfold in terms of sensitivity, specificity, and Matthews correlation coefficient value.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.