361
Views
15
CrossRef citations to date
0
Altmetric
Articles

Biomechanical comparison of conventional and optimised locking plates for the fixation of intraarticular calcaneal fractures: a finite element analysis

, , , , , & show all
Pages 1339-1349 | Received 07 Nov 2016, Accepted 27 Jul 2017, Published online: 03 Aug 2017
 

Abstract

Intraarticular calcaneal fractures can result in poor prognosis. Although operative fixation can improve the functional outcomes in most cases, surgical complications such as loss of reduction and wound healing problems may increase the risk of reoperation. Hence, this study aimed to design calcaneal locking plate with a lower profile and better biomechanical performance   and to compare the redesigned plate with the traditional calcaneal plate via the finite element method. A Sanders’ type II-C intraarticular calcaneal fracture was simulated. Two fixation models utilising the branch-like calcaneal locking plate and the full plate were constructed. Topology optimisation was conducted to generate a new calcaneal plate design. A biomechanical comparison among the three groups of plates was performed using the finite element method. For the fracture simulated in this study, the optimised plate was superior to the traditional plate in terms of fixation stability and safety but was reduced in volume by approximately 12.34%. In addition, more rational stress distributions were observed in the redesigned plate, underscoring the superiority of this new design in terms of fatigue strength. These results demonstrate that the topology optimisation can be used to design a new implant with a minimised profile and no loss of fixation stability.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.