531
Views
9
CrossRef citations to date
0
Altmetric
Articles

Finite element analysis of titanium alloy-graphene based mandible plate

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 324-330 | Received 06 Jun 2018, Accepted 29 Nov 2018, Published online: 09 Jan 2019
 

Abstract

Titanium alloy based maxillofacial plates and implants are widely used in fracture treatment and reconstructions. Filler materials Graphene Nanoplatlets(GNPs) were used in a Titanium alloy maxillofacial plate and a Finite Element Model (FEM) was designed to reconstruct a fractured human mandible. Both 50N and 500N bite forces were applied on the mandible and stress distribution using Von mises failure theory across the plate sections was analyzed. A pure plate was critically stressed at a section near the mandible fracture region for a Von mises stress of nearly 27.5GPa while this stress reduced by nearly 10–22% with the presence of minor composition of GNPs in the plate. GNPs orientation in parallel (21.1 GPa) to the plate axis were more effective in comparison to other orientations(90°, 45° and 135°) and the location variation of these GNPs along the plate had no significant effect on the stress distribution. The fatigue analyses showed that, under these stresses and forces the plate with GNP was able to endure for nearly 7000 days, while the pure Titanium plate could fail by fatigue in approximately 70 days. Hence, presence of minor compositions of GNPs could enhance endurance life of the Titanium plate by reducing stress concentrations at critical sections of the plate.

Acknowledgements

Dr. Prashant Jindal is currently working as Commonwealth Rutherford Fellow (CSC ID: INRF-2017-146) within the Medical Engineering Design Research Group, Nottingham Trent University, Nottingham, UK and gratefully acknowledges the Commonwealth Scholarship Commission in the UK for their support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.