1,014
Views
6
CrossRef citations to date
0
Altmetric
Articles

Simulation and evaluation of 3D traction force microscopy

, , &
Pages 853-860 | Received 30 May 2018, Accepted 22 Mar 2019, Published online: 09 Apr 2019
 

Abstract

Measuring cell-generated forces by Traction Force Microscopy (TFM) has become a standard tool in cell mechanobiology. Although widely used in two dimensional (2D) experiments, only a few methods exist to measure traction in three-dimensional (3D) cell culture, since 3D volumetric high-resolution microscopy and more demanding computational approaches are required. Although it is commonly known that the selected experimental and computational setup highly influence the quality and accuracy of the results, no existing methods can adequately assess the errors involved in this process. We present a fully integrated simulation and evaluation platform that allows one to simulate TFM images and quantify errors of an applied approach for traction stress reconstruction, in order to improve experiments that attempt to measure mechanical interaction in cellular systems. In this context, we show that a careful parameter selection can decrease the reconstructed traction error by up to 40%.

Disclosure statement

The authors have nothing to disclose.

Additional information

Funding

This work was supported by Swiss National Science Foundation under Grant number 31003A_138221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.