348
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Finite element analysis of human skull bone adaptation to mechanical loading

, & ORCID Icon
Pages 753-764 | Received 06 Sep 2020, Accepted 10 Nov 2020, Published online: 26 Nov 2020
 

Abstract

Bones self-optimize their mechanical behavior in response to mechanical stimulus. The objective of this research was to develop an integrated bone remodeling and stress binning algorithms into a finite element environment to elucidate the evolution of the bone properties as a function of loading. The bone remodeling algorithm was used to calculate the change in the density and elastic modulus based on the strain energy stimulus. The stress-binning procedure seeks to assign the properties to each element based on the levels of stress from the previous cycle, eliminating pseudo-lazy-zoning and stress dilation effects. The developed algorithms were used to analyze the response skull to loading associated with orthodontic devices. Specifically, a load was applied between the roots of the canine teeth and the first premolars while constraining the foramen magnum. Full-field contours of the displacement, strain, and strain energy were extracted after each remodeling cycle at nine commonly cephalometric landmarks. The results indicate that the overall mechanical response and the associated properties reached a steady-state behavior after nearly 50 cycles of applying the algorithm, where different zones within the skull exhibited unique evolution based on the locations from the loading and boundary sites. When approaching this steady-state condition, it was found that the upper incisor displacement is reduced by 72%, and the density is reduced by almost 7.5%. The finite element approach can be used in defining the treatment process by dynamically changing the loads. Future research will focus on integrating the time-dependent behavior of the bone.

Acknowledgments

The authors are grateful to Dr. Mike J. Kabo of California State University, Northridge, for his insightful discussions at the inception of this research phase. We are also grateful to Dr. Moon of the University of California Los Angeles for introducing the lead author to this interesting topic.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.