1,409
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture

ORCID Icon, &
Pages 864-873 | Received 07 Jul 2020, Accepted 23 Nov 2020, Published online: 08 Dec 2020
 

Abstract

We aimed to determine whether artificial intelligence (AI)-assisted markerless motion capture software is useful in the clinical medicine and rehabilitation fields. Currently, it is unclear whether the AI-assisted markerless method can be applied to individuals with lower limb dysfunction, such as those using an ankle foot orthosis or a crutch. However, as many patients with lower limb paralysis and foot orthosis users lose metatarsophalangeal (MP) joint flexion during the stance phase, it is necessary to estimate the accuracy of foot recognition under fixed MP joint motion. The hip, knee, and ankle joint angles during treadmill walking were determined using OpenPose (a markerless method) and the conventional passive marker motion capture method; the results from both methods were compared. We also examined whether an ankle foot orthosis and a crutch could influence the recognition ability of OpenPose. The hip and knee joint data obtained by the passive marker method (MAC3D), OpenPose, and manual video analysis using Kinovea software showed significant correlation. Compared with the ankle joint data obtained by OpenPose and Kinovea, which were strongly correlated, those obtained by MAC3D presented a weaker correlation. OpenPose can be an adequate substitute for conventional passive marker motion capture for both normal gait and abnormal gait with an orthosis or a crutch. Furthermore, OpenPose is applicable to patients with impaired MP joint motion. The use of OpenPose can reduce the complexity and cost associated with conventional passive marker motion capture without compromising recognition accuracy.

Additional information

Funding

This study was supported by Center Of Innovation (COI) programs of Japan Science and Technology Agency, Japan Society for the Promotion of Science Grant-in-Aid for Early-Career Scientists (JP19K19865), and grant-in-aid for work-related injuries of Ministry of Health, Labor and Welfare (190401).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.