167
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of multi-component fluid model in studies of the origin of skin burns during electrosurgical procedures

, &
Pages 1409-1418 | Received 19 Aug 2020, Accepted 11 Feb 2021, Published online: 05 Mar 2021
 

Abstract

This paper reports on safety challenges regarding spark created when the applied electric field exceeds the dielectric breakdown strength as a source of complication during electrosurgery. Despite the unquestionable benefits of electrosurgery, such as minimal chances of infection and fast recovery time, the interaction of the electrosurgical tool with the tissue may result in tissue damage and force feedback to the tool. Some risks of complications often depend on a surgeon's knowledge of instruments and safety aspects of technical equipment that can be eliminated by clarifying the causation and conditions of their development. Current trends in electrosurgery include computational algorithms and methods to control the effect of delivered energy to the patient. For this study, calculations were performed by using the COMSOL simulation package based on a multi-component plasma fluid model. The emphasis is put on conditions that lead to the breakdown of the dielectric medium. It was found that breakdown occurs most easily when both electrodes are cylindrical. For configurations with one or two spherical electrodes, breakdown voltages are higher up to 25% and 48%, respectively. With decreasing the cathode radius, the breakdown voltage may decrease even to 41%. On the other hand, the temperature increase lowers the breakdown voltage. Also, electrical asymmetries appear to be a response to the non-symmetry of the electric field between the electrodes causing differences in the breakdown voltage between 36% and 70%. The results presented here could be very useful for the design of surgical devices to prevent potential complications of electrosurgical procedures.

Acknowledgements

The authors acknowledge funding provided by the Institute of Physics Belgrade, through the grant by the Ministry of Education, Science and Technological Development of the Republic of Serbia. This publication has also been written thanks to the support of the Operational Programme Integrated Infrastructure for the project: Innovation through research into the integration of heterogeneous IoT systems using Smart Active Cloud technologies with high-level security (ITMS code: 313012Q938), co-funded by the European Regional Development Fund (ERDF).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.