346
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A study on the transport and interaction between blood flow and low-density-lipoprotein in near-wall regions of blood vessels

ORCID Icon, & ORCID Icon
Pages 1473-1487 | Received 30 Apr 2020, Accepted 17 Feb 2021, Published online: 08 May 2021
 

Abstract

Differences in the dynamics and transport of blood make certain regions of the arterial network the preferred sites for initiation and formation of arterial diseases like stenosis and aneurysms. Understanding of such arterial diseases is directly linked to critical hemodynamic parameters such as the wall shear stress (WSS). The present work generalises the influence of WSS on the concentration of LDL that was observed in an earlier study. To this end, a wide variety of simplified flow domain, inspired by the near-wall regions of aneurysms and stenosis, are constructed and analyzed. The effects of pulsatile inflow condition, rheology of blood and curvature of the wall on the correlation between WSS and LDL concentration are investigated. It is demonstrated that the time-scale of variation of lumen-surface-concentration (LSC) of LDL is larger than a single cardiac cycle. As a consequence, the time-average values of WSS are sufficient to locate the regions of higher LSC. This idea is strengthened by making use of simplified flow domain that generates moving stagnation point. Further, it was observed that the rheology of the blood and curvature of the wall does not affect the observed correlation between the WSS and LDL concentration.

Acknowledgement(s)

The authors acknowledge the computational resources provided by P.G. Senapathy Center for Computing Resources on VIRGO computing cluster at Indian Institute of Technology Madras, Chennai, India.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.